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Abstract
Wepresent a novel approach to automatic SignLanguage Production using recent developments inNeuralMachineTranslation
(NMT), Generative Adversarial Networks, and motion generation. Our system is capable of producing sign videos from
spoken language sentences. Contrary to current approaches that are dependent on heavily annotated data, our approach
requires minimal gloss and skeletal level annotations for training. We achieve this by breaking down the task into dedicated
sub-processes. We first translate spoken language sentences into sign pose sequences by combining an NMT network with a
Motion Graph. The resulting pose information is then used to condition a generative model that produces photo realistic sign
language video sequences. This is the first approach to continuous sign video generation that does not use a classical graphical
avatar. We evaluate the translation abilities of our approach on the PHOENIX14T Sign Language Translation dataset. We set
a baseline for text-to-gloss translation, reporting a BLEU-4 score of 16.34/15.26 on dev/test sets. We further demonstrate the
video generation capabilities of our approach for bothmulti-signer and high-definition settings qualitatively and quantitatively
using broadcast quality assessment metrics.

Keywords Generative adversarial networks · Neural machine translation · Sign language production

1 Introduction

According to theWorldHealthOrganization there are around
466 million people in the world that are deaf or suffer from
disabling hearing loss (WHO: World Health Organization
2018). Whilst not all these people rely on sign languages
as their primary form of communication, they are widely
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used, with an estimated 151,000 users of British Sign Lan-
guage (BDA: British Deaf Association 2019) in the United
Kingdom, and approximately 500,000 people primarily com-
municating in sign languages across the European Union
(EU: European Parliament 2018).

Like spoken languages, sign languages have their own
grammatical rules and linguistic structures. This makes the
task of translating between spoken and signed languages a
complex problem, as it is not simply an exercise of mapping
text to gesturesword-by-word (see Fig. 1which demonstrates
that both the tokenization of the languages and their ordering
is different). It requires machine translation methods to find
a mapping between a spoken and signed language, that takes
into account both their language models.

To facilitate easy and clear communication between the
hearing and the Deaf, it is vital to build robust systems that
can translate spoken languages into sign languages and vice
versa. This two way process can be facilitated using Sign
LanguageRecognition (SLR) and SignLanguage Production
(SLP), (see Fig. 2).

Commercial applications for sign language primarily
focus on SLR, by mapping sign to spoken language, typi-
cally providing a text transcription of the sequence of signs,
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Fig. 1 Translating from spoken language text into sign language video.
Glosses are used as an intermediate representation. There is often no
direct mapping between spoken language and sign language sentences

Fig. 2 Sign language recognition versus production

such as Elwazer (2018), and Robotka (2018). This is due
to the misconception that deaf people are comfortable with
reading spoken language and therefore do not require trans-
lation into sign language. However, there is no guarantee
that someone who’s first language is, for example, British
Sign Language, is familiar with written English, as the two
are completely separate languages. Furthermore, generat-
ing sign language from spoken language is a complicated
task that cannot be accomplished with a simple one-to-one
mapping. Unlike spoken languages, sign languages employ
multiple asynchronous channels (referred to as articulators
in linguistics) to convey information. These channels include
both the manual (i.e. upper body motion, hand shape and tra-
jectory) and non-manual (i.e. facial expressions, mouthings,
body posture) features.

The problem of SLP is generally tackled using animated
avatars, such as Cox et al. (2002), Glauert et al. (2006) and
McDonald et al. (2016). When driven using motion cap-
ture data, avatars can produce life-like signing, however this
approach is limited to pre-recorded phrases, and the produc-
tion of motion capture data is costly. Another method relies
on translating the spoken language into sign glosses,1 and
connecting each entity to a parametric representation, such
as the hand shape and motion needed to animate the avatar.
However, there are several problemswith thismethod. Trans-
lating a spoken sentence into sign glosses is a non-trivial task,
as the ordering and number of glosses does not match the
words of the spoken language sentence (see Fig. 1).Addition-
ally, by treating sign language as a concatenation of isolated
glosses, any context and meaning conveyed by non-manual
features is lost. This results in at best crude, and at worst
incorrect translations, and results in the indicative ‘robotic’
motion seen in many avatar based approaches.

1 Glosses are lexical entities that represent individual signs.

Fig. 3 Traditional avatar-based approaches to SLP compared to our
deep generative approach, left: eSign (2005) (Zwitserlood et al. 2004),
middle: DictaSign (2012) (Efthimiou 2012), and right: our photo-
realistic approach

To advance the field of SLP, we propose a new approach,
harnessingmethods fromNMT, computer graphics, and neu-
ral network based image/video generation. The proposed
method is capable of generating a sign language video, given
a written or spoken language sentence. An encoder-decoder
network provides a sequence of gloss probabilities from spo-
ken language text input, that is used to condition a Motion
Graph (MG) to find a pose sequence representing the input.
Finally, this sequence is used to condition a GAN to produce
a video containing sign translations of the input sentence (see
Fig. 4). The contributions of this paper can be summarised as:

– An NMT-based network combined with a motion graph
that allows for continuous-text-to-pose translation.

– A generative network conditioned on pose and appear-
ance.

– To our knowledge the first spoken language to sign lan-
guage video translation system without the need for
costly motion capture or an avatar.

A preliminary version of this work was presented in Stoll
et al. (2018). This extendedmanuscript contains an improved
pipeline and additional formulation. We introduce an MG
into the process, that combined with the NMT network
is capable of text-to-pose (text2pose) translations. Further-
more, we demonstrate the generation of multiple signers of
varying appearance.Wealso investigate high-definition (HD)
sign generation. Extensive new quantitative as well as qual-
itative evaluation is provided, exploring the capabilities of
our approach. Figure 3 gives a comparison of the output of
our approach (right) to other avatar based approaches (left
and middle).

The rest of this paper is organised as follows: Sect. 2 gives
an overview of recent developments in NMT as well as tradi-
tional SLP using avatars. We explain the concept of motion
graphs, before describing recent advancements in generative
imagemodels. Section 3 introduces all parts of our approach.
In Sect. 4 we evaluate our system both quantitatively and
qualitatively, before concluding in Sect. 5.
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2 RelatedWork

We treat Sign Language Production (SLP), as a translation
problem from spoken into signed language.We therefore first
review recent developments in the field of Neural Machine
Translation (NMT). However, SLP is different from tradi-
tional translation tasks, in that it inherently requires visual
content generation. Normally this is performed by animating
a 3D avatar. We will therefore give an overview of past and
current sign avatar technology. Finally, we cover the con-
cept of Motion Graphs (MGs), a technique used in computer
graphics to dynamically animate characters, and the field of
conditional image generation.

2.1 Neural Machine Translation

NMT utilises Recurrent Neural Network (RNN) based
sequence-to-sequence (seq2seq) architectures which learn a
statistical model to translate between different languages.
Seq2seq (Sutskever et al. 2014; Cho et al. 2014) has seen
success in translating between spoken languages. It consists
of two RNNs, an encoder and a decoder, that learn to trans-
late a source sequence to a target sequence. To tackle longer
sequences Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber 1997) or Gated Recurrent Units (GRU)
(Chung et al. 2014) are used as RNN cells. Both architec-
tures have mechanisms that allow each cell to pass only the
relevant information to the next time step, hence improving
translation performance over longer-term dependencies.

To further improve the translation of long sequences Bah-
danau et al. (2014) introduced the attention mechanism. It
provides additional information to the decoder by allowing
it to observe the encoder’s hidden states. This mechanism
was later improved by Luong et al. (2015).

Camgoz et al. 2018 combine a standard seq2seq frame-
work with a Convolutional Neural Network (CNN) to trans-
late sign language videos to spoken language sentences. They
first extract features from video using the CNN before trans-
lating to text. Similarly, Guo et al. (2018) combine a CNN
and anLSTM-based encoder-decoder.However, they employ
a 3D CNN to better learn spatio-temporal relationships and
identify key clips. This guides the model to focus on the
information-rich content. Both approaches can be seen as
the inverse to our problem, of translating text to pose.

More recently non-RNN based NMT methods have been
explored. ByteNet (Kalchbrenner et al. 2016) performs trans-
lation using dilated convolutions, and Vaswani et al. (2017)
introduced the transformer, which is a purely attention-based
translation method. Specifically focusing on sign language
multi-modal fusion networks have been proposed (Guo et al.
2017; Wang et al. 2018a).

Using NMT methods to translate text to pose is a rela-
tively unexplored and open problem. Ahn et al. (2018) use an

RNN-based encoder-decoder model to produce upper body
pose sequences of human actions from text and map them
onto a Baxter robot. However, their results are purely qual-
itative and rely on human interpretation. For our work we
first translate from text to gloss using a seq2seq architecture
with Luong attention (Luong et al. 2015) and GRUs (Chung
et al. 2014), similar to Camgoz et al. (2018). However, as we
are translating text to pose we do not use a CNN as an initial
step. In contrast, we use the probabilities produced by the
decoder at each time step to solve a Motion Graph (MG) of
sign language pose data, to obtain the text to pose translation.

2.2 Avatar Approaches for Sign Language
Production

Sign avatars can either be driven directly frommotion capture
data, or rely on a sequence of parametrised glosses. Since
the early 2000s there have been several research projects
exploring avatars animated from parametrised glosses, e.g.
VisiCast (Bangham et al. 2000), eSign (Zwitserlood et al.
2004), Tessa (Cox et al. 2002), dicta-sign (Efthimiou 2012),
and JASigning (Virtual Humans Group 2017). All of these
approaches rely on sign video data to be annotated using a
transcription language, such as HamNoSys (Prillwitz 1989)
or SigML (Kennaway 2013).Whilst these avatars are capable
of producing sign sequences, they are not popular with the
Deaf community. This is due to under-articulated and unnat-
ural movements, but mostly due to missing non-manuals,
such as eye gaze and facial expressions (see Fig. 3). Impor-
tant meaning and context is lost this way, making the avatars
difficult to understand. Furthermore, the robotic motion of
the aforementioned avatars can make viewers uncomfort-
able, due to the uncanny valley2 (Mori et al. 2012). Recent
work has begun to integrate non-manuals into the annota-
tion and animation process (Ebling and Glauert 2013; Ebling
and Huenerfauth 2015). However, the correct alignment and
articulation of these features poses an unsolved problem, that
limit recent avatars such as McDonald et al. (2016) and Kipp
et al. (2011).

To make avatars both easier to understand, and increase
viewer acceptance, recent sign avatars rely on data collected
frommotion capture.One example of amotion capture driven
avatar is the Sign3Dproject byMocapLab (Gibet et al. 2016).
Given the richness of motion capture data, this approach pro-
vides highly realistic results, but is limited to a very small set
of phrases, as collecting and annotating data is expensive,
time consuming and requires expert knowledge. Although
these avatars are better received by the Deaf community, they
do not provide a scalable solution. The uncanny valley also

2 The uncanny valley is a concept aimed at explaining the sense of
unease people often experience when confronted with simulations that
closely resemble humans, but are not quite convincing enough.
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still remains a large hurdle. To make synthetic signing more
realistic, scalable and avoid the aforementioned problems
of 3D avatars, we propose to directly generate sign video
from weakly annotated data using the latest developments
in machine translation, generative image models andMotion
Graphs (MGs).

2.3 Motion Graphs

Motion Graphs (MGs) are used in computer graphics to
dynamically animate characters, and can be formulated as a
directed graph that is constructed frommotion capture data. It
allows new lifelike sequences to be generated that satisfy spe-
cific goals at runtime. MGs were independently introduced
by Kovar et al. (2002), Arikan and Forsyth (2002), and Lee
et al. (2002). Kovar et al. (2002) define the distance between
two frames by calculating the distance between two point
clouds. For creating the transitions themselves, the motions
are aligned and positions are linearly interpolated between
joint rotations. As a search strategy, branch and bound is
used. Arikan and Forsyth (2002) use the difference between
joint positions andvelocities and the difference between torso
velocities and accelerations, to define how close or distant
two frames are. A smoothing function is applied to the dis-
continuity between two clips. The graph is searched by first
summarizing it and then performing a random search over the
summaries. Lee et al. (2002) chose a two layer approach to
represent motion data. In the lower layer all data is modelled
as a first-order Markov process, where theMarkov process is
represented by a matrix holding the transition probabilities
between frames. The probabilities are derived from measur-
ing the distances of weighted joint angles and velocities.
Transitions of low probability are pruned. For blending tran-
sitions a hierarchical motion fitting algorithm is used Lee
and Shin (1999). The higher layer generalises the motion
preserved in the lower layer by performing cluster analysis,
to make it easier to search. Each cluster represents similar
motion, but to capture connections between frames a cluster
tree is formed at each motion frame. The whole higher layer
is called a cluster forest.

We build an MG for sign language pose data, by split-
ting continuous sign sequences into individual glosses, and
grouping all motion sequences by gloss. These motion
sequences populate the nodes of our MG. We then use the
probabilities provided by our NMT decoder at each time step
to transition between nodes.

2.4 Conditional Image Generation

With the advancements in deep learning, the field of image
generation has seen various approaches utilising neural-
network based architectures. Chen and Koltun (2017) used
CNN based cascaded refinement networks to produce photo-

graphic images given semantic labelmaps. Similarly, van den
Oord et al. (2016) developed PixelCNN, which produces
images conditioned on a vector, that can be image tags or fea-
ture embeddings provided by another network. Gregor et al.
(2015) and Oord et al. (2016) also explored the use of RNNs
for image generation and completion. All these approaches
rely on rich semantic or spatial information as input, such
as semantic label maps, or they suffer from being blurry and
spatially incoherent.

Since the advent of GANs (Goodfellow et al. 2014), they
have been used extensively for the task of image genera-
tion. Soon after their emergence, Mirza and Osindero Mirza
and Osindero (2014) developed a conditional GAN model,
by feeding the conditional information to both the Genera-
tor and Discriminator. Radford et al. (2015) proposed Deep
Convolutional GAN (DCGAN) which combines the general
architecture of a conditional GAN with a set of architectural
constraints, such as replacing deterministic spatial pooling
with strided convolutions. These changes made the system
more stable to train and well-suited for the task of generat-
ing realistic and spatially coherent images.Many conditional
image generation models have been built by extending the
DCGANmodel. Notably Reed et al. (2016) built a system to
generate images of birds that are conditioned on positional
information and text description, using text embedding and
binary pose heat maps.

An alternative to GAN-based image generation models
is provided by Variational Auto-Encoders (VAEs) (Kingma
andWelling 2013). Similar to classical auto-encoders, VAEs
consist of two networks, an encoder and a decoder. How-
ever, VAEs constrain the encoding network to follow a unit
Gaussian distribution. Yan et. al. developed a conditional
VAE (Yan et al. 2016), that is capable of generating spatially
coherent, but blurry images, a tendency of most VAE-based
approaches.

Recent work has looked at combining GANs and VAEs
to create robust and versatile image generation models.
Makhzani et. al. introduced Adversarial Auto-encoders and
applied them to problems in supervised, semi-supervised and
unsupervised learning (Makhzani et al. 2016). Larsen et. al.
have combined VAEs and GANs that can encode, generate
and compare samples in an unsupervised fashion (Larsen
et al. 2016). Perarnau et. al. developed Invertible Conditional
GANs that use an encoder to learn a latent representation of
an input image and a feature vector to change the attributes
of human faces (Perarnau et al. 2016).

VAE/GAN hybrid models have proven particularly pop-
ular for generating images conditioned on human pose, as
done by Ma et al. (2017) and Siarohin et al. (2018). Ma et al.
synthesize images of people in arbitrary poses in a two-stage
process by fusing an input image of a person for appearance
and a heat map providing pose information into a new image
in one network, before refining it in a second network. Siaro-
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Fig. 4 Full system overview. A spoken language sentence is translated
into a representative skeletal pose sequence. This sequence is fed into
the generative network frame by frame, in order to generate the input
sentence’s sign language translation

hin et al. use a similar method, but additionally use affine
transformations to help change the position of body parts.

In the sub-field of image-to-image translation, Isola et al.
(2017) introduced pix2pix a conditional GAN, which given
its information-rich input and avoidance of fully connected
layerswas also among the first contenders for generating high
definition image content. Building on the success of pix2pix
and architecture proposed by (Johnson et al. 2016), Wang
et al. recently presented pix2pixHD (Wang et al. 2018b),
a network capable of producing 2048 × 1024 images from
semantic label maps, using a generator and multi-scale dis-
criminator architecture: A global generator consisting of a
convolutional encoder, a set of residual blocks and a convo-
lutional decoder. In addition, a local enhancer network, of
similar architecture, provides high resolution images from
semantic label maps. Three discriminators are used at differ-
ent scales to differentiate real from generated images.

For our work, we follow two strands of conditional image
generation techniques: We build a multi-person sign gener-
ation network conditioned on human appearance and pose,
similar to the works of Ma et al. (2017) and Siarohin et al.
(2018). In addition we also investigate single-signer HD sign
generation by building on the work of Wang et al. (2018b).

3 Text to Sign Language Translation

Our text-to-sign-language (text2sign) translation systemcon-
sists of two stages: We train an NMT network to obtain
a sequence of gloss probabilities that is used to solve a
Motion Graph (MG) which generates human pose sequences
(text2pose inFig. 4).Then a pose-conditioned sign generation
network with an encoder-decoder-discriminator architecture
produces the output sign video (see pose2video in Fig. 4).
We will now discuss each part of our system in detail.

3.1 Text to Pose Translation

We employ recent RNN based machine translation methods,
namely attention based NMT approaches, to realize spoken
language sentence to sign language gloss sequence transla-
tion.Weuse an encoder-decoder architecture (Sutskever et al.
2014) with Luong attention (Luong et al. 2015) (see Fig. 5).

Fig. 5 Our NMT-based encoder-decoder architecture (Sutskever et al.
2014) with Luong attention (Luong et al. 2015)

Given a spoken language sentence, SN = {w1, w2, . . . ,

wN }, with N number of words, our encoder maps the
sequence into a latent representation as in:

o1:N , heN = Encoder(SN ) (1)

where o1:N is the output of the encoder for each wordw, and
heN is the hidden representation of the encoded sentence. In
Fig. 5, the encoder is depicted in blue. This hidden represen-
tation and the encoder outputs are then passed to the decoder,
which utilises an attention mechanism and generates a prob-
ability distribution over glosses:

p(gt ) = Decoder(gt−1, h
d
t−1, α(o1:N )) (2)

where α(·) is the attention function, gt is the gloss produced
at the time step t and hdt−1 is the hidden state of the decoder
passed from the previous time step. At the beginning of the
decoding, i.e. t = 1, hdt−1 is set as the encoded represen-
tation of the input sentence, i.e. hd0 = heN . See Fig. 5 for a
visualisation.

The reason we utilize an attention based approach instead
of a vanilla sequence-to-sequence based architecture is to
tackle the long term dependency issues by providing addi-
tional information to the decoder. To train our NMT network,
we use cross entropy loss over the gloss probabilities at each
time step.

We build a Motion Graph (MG) that allows a sequence of
2D skeletal poses to be generated for a given gloss sequence.
AnMG is aMarkov process that can be used to generate new
motion sequences that are representative of real motion but
fulfil the objectives of the animator e.g. getting from A to
B using a specific style of motion. A standard formalisation
of an MG is as a finite directed graph of motion primitives
(Min and Chai 2012): MG = (V , E), where node vi ∈ V in
the graph corresponds to one or more sequences of motion
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Fig. 6 The graph nodes vi and v j contain one ormoremotion primitives
(depicted by skeletal posemaps) xi and x j , and a prior distribution p(xi )
and p(x j ). We define the transition probability between nodes vi and v j
as the probability of motion primitive x j given xi .Yi,j smooths between
motion primitives

(motion primitives) and a prior distribution function p(xi )
over those motion primitives (xi ). Each motion primitive for
a node is an example of the style of motion the node rep-
resents. It is therefore possible to have a variable number
of motion primitives in a node, the minimum being one. An
edge ei, j ∈ E , which represents an allowable transition from
node vi to v j , stores a morphable function Yi,j = M(xi , x j )
that enables blending betweenmotions, and a probability dis-
tribution p(x j |xi ) over the motion primitives x j at node v j ,
given a chosen motion primitive xi at node vi . See Fig. 6 for
a visualisation.

The motion primitives need to be extracted from a larger
set of motion capture data. This can be done by identifying
key frames in the motion data that are at the transition points
between motions e.g. the left foot impacting the floor for
walking sequences. These key-frames are then used to cut
the data up into a larger set of motion primitives xi , where
each motion primitive is a continuous motion between two
key-frames. For more complex datasets of motion, a typi-
cal approach is to define a distance metric between skeletal
poses which can be used to identify possible transition points
as those that fall below a given threshold. The threshold
being set to be small enough such that interpolation between
two poses will not cause visual disturbance in the fluidity of
motion. For our application, we use the gloss boundaries to
automatically cut the pose sequences into individual signs
so |V | is equal to the gloss vocabulary size and xg contains
examples of sign gloss g.

In a graphics context E is learned directly from the data by
looking at the transitions between nodes in the graph present
in the original data. However, in our case, E is generated at
each time step by the decoder network, given the previously
generated glosses and encoded sequence, as in:

et−1,t = p(xt |xt−1)

= p(gt |g1:t−1, S
N )

= Decoder(gt−1, h
d
t−1, α(o1:N )). (3)

The purpose of Yi,j is to allow smooth transition between
different motion primitives. In our case it is constant for all

nodes in the graph. We use a Savitzky–Golay filter (Savitzky
and Golay 1964) to create smooth transitions. This is done
dynamically as the graph is searched. The Savitzky–Golay
filter smooths between motion primitives by fitting a low-
order polynomial to adjacent data points. We use a window
size of five and a polynomial order of two to smooth between
the last five frames of the current motion primitive and the
first five frames of the upcoming primitive. This allows us to
preserve the articulation of each motion primitive, but avoid
discontinuities and artefacts at transition points.

To find the most probable motion sequence given a spo-
ken language sentence, we employ beam search over our
motion graph. We start generating our sequence from the
special x0 =< bos > (beginning of sequence) node. At
each motion step, we consider a list of hypotheses, HB =
{H1, . . . , Hb, . . . , HB} where B denotes our beam width.

At each step we expand our hypotheses with a newmotion
as in:

Ht
b = {Ht−1

b , x∗
t }, (4)

where Ht
b denotes the set of motions in Hb at step t. We

choose x∗
t by:

x∗
t = argmax

x
p(x |xt−1), (5)

where xt−1 ∈ Ht−1
b . We continue expanding our hypotheses

until all of them reach to special x_ =< eos > (end of
sequence) node. We then choose the most probable motion
sequence H∗ by:

H∗ = argmax
Hb

|Hb|∏

i=1

p(xi |xi−1). (6)

3.2 Pose to Video Translation

The pose-to-video (pose2video) network combines a con-
volutional image encoder and a Generative Adversarial
Network (GAN), see Fig. 7 for an overview. A GAN consists
of two models that are trained in conjunction: A generator G
that creates new data instances, and a discriminator D that
evaluates whether these belong to the same data distribution
as the training data. During training, G aims to maximise the
likelihood of D falsely predicting a sample generated byG to
be part of the training data, while D tries to correctly identify
samples to be either fake or real. Using this minmax game
setup, the generator learns to produce more and more real-
istic samples, ideally to the point where D cannot separate
them from the ground truth.

G is an encoder-decoder, conditioned on human pose and
appearance. The latent space can either be a fixed-size one-
dimensional vector, or a variable-size residual block. A fixed
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Fig. 7 Our sign generator G has an encoder-decoder structure. It can
be conditioned on human pose and appearance. For this we use a human
pose label map Pt and a frame of the signer Ia . The latent space Res
for the HD generator is a block of residual layers, whereas the the latent
space FC for the MS generator is encoded in a 1-dimensional vector

using a fully connected layer.We employ two losses: an adversarial loss
using the discriminator D, and an L1 loss. For the MS case we take a
pixel-based L1 loss, whereas for the HD case we match extracted fea-
tures from multiple layers of D and calculate the L1 distance between
features

size 1D vector latent space using a fully connected layer
allows generation of images with both large appearance and
spatial change and is employed for multi-signer (MS) out-
put. However, the ability to generate spatial change, and
the requirement for fully connected layers increases mem-
ory consumption, and limits the output size of the generated
images. In contrast, a fully convolutional latent space, such
as a number of residual layers, allows for changes in appear-
ance, like changing from a pose label map to an image of a
human being in that pose, but does not allow for large spatial
changes. This enables the network to transfer style similar
to pix2pixHD by Wang et al. (2018b) or Chan et al. (2018).
However, due to the avoidance of fully connected layers and
with the use of an additional enhancing network, it is capa-
ble of producing sharp high definition outputs.We investigate
this second formulation for generating high-definition (HD)
sign video.

3.2.1 Image Generator

As input to the generator we concatenate Pt and Ia as sepa-
rate channels, where Pt is a human pose label map. For MS
generation Ia is an image of an arbitrary human subject in a
resting position (base pose). The HD sign generator cannot
be conditioned on a base pose, as it does not allow for large
spatial changes. Instead it is conditioned on the generated
image from the previous time step. On top of helping with
appearance this enforces temporal consistency.

The input to the generator is pushed through the con-
volutional encoder part of the generator and encoded into
the latent space. The decoder part of the generator uses up-
convolution and resize-convolution to decode from the latent
space back into an image using the embedded skeletal infor-
mation provided by the label map Pt . This produces an image
G(Pt , Ia)of the signer in the pose indicated by Pt (see Fig. 7).

In the HD sign variant, an enhancer network En is used
to upscale and refine the output images produced by the
generator G. Its architecture is very similar to G, consist-
ing of a convolutional encoder, a residual block and an
up-convolutional decoder. G is first trained individually, fol-
lowed by En, before training both networks in conjunction.

3.2.2 Discriminator

The discriminator D receives either a tuple of the generated
synthetic image G(Pt , Ia) or ground truth It , and the pose
label map Pt as input. In theMS case, D is also providedwith
Ia (see Fig. 7). D decides on image’s authenticity. In the MS
case, given that the system is trained on multiple signers, Ia
is used to establish whether the generated image resembles
the desired signer. The skeletal information provided by Pt
is used to assess if the generated image has the desired joint
configuration. For the HD sign case, likeWang et al. (2018b)
we use a multi-scale discriminator with three scales (in our
case 1080 × 720, 540 × 360, and 270 × 180).

3.2.3 Loss

We use the GAN’s adversarial loss, as well as an L1 loss
between generated and ground truth images to train our net-
works. See Fig. 7 for a visualisation. The overall loss is
therefore defined as:

L = LGAN + δL1, (7)

where δ weighs the influence of L1.
For MS generation we give Ia to the generator and the

discriminator to distinguish between signers. The adversarial
loss is thus defined as:
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LGANms (G, D) = E
(Pt ,It ,Ia)

[logD(Pt , It , Ia)]
+ E

(Pt ,Ia)
[log(1 − D(Pt ,G(Pt , Ia), Ia))].

(8)

The MS L1 loss is defined as the sum of absolute pixel
difference between ground truth and generated image:

L1ms (G) =
∑

|(It − G(Pt , Ia))|. (9)

For HD generation the adversarial loss is defined as:

LGANhd (G, Dk) = E
(Pt ,It )

[logDk(Pt , It )]
+ E

(Pt )
[log(1 − Dk(Pt ,G(Pt , Ia)))],

(10)

where k is the number of discriminator scales. To combine
the adversarial losses of all Dk , we sum:

LGANhd (G, D) =
∑

k=1,2,3

LGANhd (G, Dk). (11)

For HD generation the L1 loss is based on the feature
matching loss presented in Wang et al. (2018b). Features
extracted from multiple stages of the discriminator are
matched, rather than pixels:

L1hd (G, Dk)= E
(Pt ,It )

T∑

i=1

1

Ni

[∑
|D(i)

k (Pt , It )−D(i)
k (Pt ,G(Pt , Ia))|

]

(12)

where T is the total number of layers in Dk , i is the current
layer of Dk , Ni is the total number of elements per layer, and
D(i)
k is the i th layer feature extractor of Dk . Again we sum

the L1 losses of all Dk to obtain the overall L1 loss:

L1hd (G, D) =
∑

k=1,2,3

L1hd (G, Dk). (13)

4 Experiments

We first introduce the datasets used and any necessary
pre-processing steps, before evaluating all sub-parts of our
system both quantitatively and qualitatively.We show results
for translating spoken language text to gloss sequences and
pose sequences, and for generating multi-signer (MS) and
high-definition (HD) sign video, using broadcast quality
assessment metrics. A set of qualitative examples showcases
the current state of the full preliminary translation pipeline.

4.1 Datasets

In order to realise spoken language to sign video generation,
we require a large scale dataset,which provides sign language
sequences and their spoken language translations.

Although there is vast quantities of broadcast data avail-
able and many linguistically annotated datasets, they lack
spoken language sentence to sign sequence (i.e. topic-
comment) alignment. However, recently Camgoz et al.
(2018) released RWTH-PHOENIX-Weather 2014T
(PHOENIX14T), which is the extended version of the
continuous sign language recognition benchmark dataset
PHOENIX-2014 Forster et al. (2014). PHOENIX14T con-
sists of German Sign Language (DGS) interpretations of
weather broadcasts. It contains 8257 sequences being per-
formed by 9 signers. It has a sign gloss and spoken language
vocabulary of 1066 and 2887, respectively. Each sequence
is annotated with both the sign glosses and spoken language
translations.

We trained our spoken language to sign pose network
using PHOENIX14T. However, due to the limited number of
signers in the dataset, we utilised another large scale dataset
to train the multi-signer (MS) generation network, namely
the SMILE Sign Language Assessment Dataset (Ebling et al.
2018). The SMILE dataset contains 42 signers performing
100 isolated signs for three repetitions in Swiss German Sign
Language (DSGS). Although the SMILE dataset is multi-
view, we only used the Kinect colour stream, without any
depth information or the Kinect’s built-in pose estimations.

We trained the HD sign generation network on 1280×720
HD dissemination material acquired by the Learning to
Recognise Dynamic Visual Content from Broadcast Footage
(Dynavis) project (Bowden et al. 2016). It consists of multi-
ple videos featuring the same subject performing continuous
British Sign Language (BSL) sequences. There is no align-
ment between spoken language sentences to sign sequences.

Using multiple datasets is motivated by the fact that there
is no single dataset that provides text-to-sign translations,
a broad range of signers of different appearance, and high
definition signing content. Using datasets from different sub-
ject domains and languages demonstrates the robustness
and flexibility of our method, as it allows us to transfer
knowledge between specialised datasets. This makes the
approach suitable for translating between different spoken
and signed languages, as well as other problems, such as
text-conditioned image and video generation.

4.1.1 Data Pre-Processing

In order to perform translation from spoken language to
sign pose, we need to find pose sequences that represent the
appropriate glosses. We split the continuous samples of the
PHOENIX14T dataset by gloss using a forced alignment
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approach. Then, for each gloss we perform a normalisation
over all example sequences containing that gloss. First, we
have to relate the different body shapes and sizes of all sign-
ers to that of a selected target subject. Additionally we have
to time-align all example sequences, before we can find an
average representation for each frame of the sequence. To
align different signers’ skeletons to that of a target subject,
we use OpenPose (Cao et al. 2017) to extract upper body
key points for each frame in the sequence and for a reference
frame of the target subject. We align the skeletons at the neck
joint and scale by the shoulder width. We use dynamic time
warping to time align sequences, before taking the mean of
each joint per frame over all example sequences to generate a
representative mean sequence. These mean sequences form
the nodes of our MG. We decided to use mean sequences
rather than raw example sequences, as they provide a more
stable performance. We found that corruptions in the gloss
boundary information obtained by forced alignment pro-
duced an immense variability in quality and correctness for
the samples per node in the graph. The supplementary mate-
rial contains example comparisons between a motion graph
built using mean sequences versus the raw data.

4.2 German to Pose Translation

We provide results for translating German sentences into
their intermediate gloss representation, and show how this,
combined with a MG, can be used to generate human pose
sequences from spoken language sentences.

As described in Sect. 3.1, we utilised an encoder-decoder
NMT architecture for spoken language to sign gloss transla-
tion. Both our encoder and decoder networks have 4 layers
with 1000 Gated Recurrent Units (GRUs) each. As an atten-
tion mechanism we use Luong et al.’s approach as it utilises
both encoder and decoder outputs during context vector cal-
culation. We trained our network using Adam optimisation
with a learning rate of 10−5 for 30 epochs.We also employed
dropout with 0.2 probability on GRUs to regularise training.
During inference the width B of the beam decoder is set to
three,meaning the three tophypotheses are kept per time step.
We found this number to be a good trade-off between trans-
lation quality and computational complexity. For text2pose
generation we report an average time of 0.79 s per translated
gloss using a Intel® Core™ i7-6700 CPU (3.40 GHz, 8MB
cache), where the majority of time is taken up by generating
the pose maps (0.77 s/gloss).

4.2.1 Translating German to Gloss

To measure the translation performance of our approach we
used BLEU and ROUGE (ROUGE-L F1) score as well as
Word Error Rate (WER), which are amongst the most pop-
ular metrics in the machine translation domain. We measure

the BLEU scores on different n-gram granularities, namely
BLEU 1, 2, 3 and 4, to give readers a better perspective of
the translation performance.

We compare our Text2Gloss performance against the
Gloss2Text network of Camgoz et al. (2018), which is the
opposite task of translating sign glosses to spoken language
sequences. We do this as to our knowledge there is no other
text-to-gloss translation approach for a direct comparison.
We aim to give the reader context, rather than claiming to
supersede the Gloss2Text approach (Camgoz et al. 2018).
Our results, as seen inTable 1, show thatText2Gloss performs
comparably with the Gloss2Text network. While Gloss2Text
achieves a higher BLEU-4 score, our Text2Gloss surpasses
its performance on BLEU scores with smaller n-gram and
ROUGE scores. We believe this is due to shorter length of
sign gloss sequences and their smaller vocabulary. The chal-
lenge is further exacerbated by the fact that sign languages
employ a spatio-temporal grammar which is challenging to
represent in text.

We also provide qualitative results by examining sample
Text2Gloss translations (see Table 2). Our experiments indi-
cate that the network is able to produce gloss sequences from
text that are close to the gloss ground truth. Even when the
predicted gloss sequence does not exactly match the ground
truth, the network chooses glosses that are close in meaning.

After reporting these promising intermediate results, we
will now showhow this approach can be extended to generate
human pose maps that encode the motion of signs.

4.2.2 Translating German to Pose

We give a qualitative evaluation of translating German sen-
tences into human pose sequences by solving aMG using the
NMT’s beam search. Figure 8 shows two examples. In both
cases we show key frames that are indicative of the translated
glosses. It is interesting to note that both sequences contain
the gloss WIND, twice in the top sequence and once in the
bottom sequence. The relevant key frames for each occur-
rence (key frame 2 and 6 for the top sequence, key frame 4
for the bottom sequence) are very similar, showing the con-
ditioning of poses on a specific gloss.

The poses are encoded as 128 × 128 × 10 binary label
maps, where each joint inhabits one of the 10 depth channels.
This type of map is used to generate sign language video in
Sects. 4.3 and 4.4.

4.3 Multi-Signer Generation of Isolated Signs

This section presents results using the generated label maps
to condition aGAN that generates sign video formulti-signer
(MS) video generation. We test using isolated signs from the
SMILE dataset. When testing on a GeForce GTX TITAN X
we report an average time of 1.71 s per generated image.
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Table 1 BLEU and ROUGE scores, as well as WER for PHOENIX-2014T dev and test data

Approach DEV SET TEST SET

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE WER BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE WER

Gloss2Text (Camgoz et al. 2018) 44.64 31.71 24.31 19.68 44.91 9.90 44.47 31.00 23.37 18.75 43.88 9.31

Text2Gloss (Ours) 50.15 32.47 22.30 16.34 48.42 4.83 50.67 32.25 21.54 15.26 48.10 4.53

Our network performs Text2Gloss translation. Gloss2Text scores are provided as a reference
Best results are marked in bold

Table 2 Translations from our NMT network (GT: Ground Truth)

GT Text: Am samstag ist es wieder unbestaendig. (On saturday it is changing again)

GT Gloss: SAMSTAG WECHSELHAFT (SATURDAY CHANGING)

Text2Gloss: SAMSTAG WECHSELHAFT (SATURDAY CHANGING)

GT Text: Am freundlichsten ist es noch im nordosten sowie in teilen bayerns. (It is friendliest still in the north-east as well as parts of
Bavaria)

GT Gloss: BESONDERS FREUNDLICH NORDOST BISSCHEN BEREICH (ESPECIALLY FRIENDLY NORTH-EAST LITTLE-
BIT AREA)

Text2Gloss: BESONDERS FREUNDLICH NORDOST (ESPECIALLY FRIENDLY NORTH-EAST)

GT Text: Am sonntag ab und an regenschauer teilweise auch gewitter. (On sunday rain on and off and partly thunderstorms)

GT Gloss: SONNTAG REGEN TEIL GEWITTER (SUNDAY RAIN PART THUNDER-STORM)

Text2Gloss: SONNTAG WECHSELHAFT REGEN GEWITTER (SUNDAY CHANGING RAIN THUNDER-STORM)

GT Text: Im suedosten regnet es teilweise laenger. (In the south-east it partially rains longer)

GT Gloss: SUEDOST DURCH REGEN (SOUTH-EAST THROUGH RAIN)

Text2Gloss: SUED LANG REGEN (SOUTH LONG RAIN)

GT Text: der tag beginnt ganz im osten noch freundlich später zeigt sich dann auch im nordwesten häufiger die sonne sonst überwiegen
die wolken. (The day begins friendly right in the west, later the sun shows itself more often in the north-west, othwerwise
clouds prevail)

GT Gloss: OST REGION ANFANG FREUNDLICH SPAETER NORDWEST AUCH SONNE SONST REGION WOLKE (EAST
REGION BEGINNING FRIENDLY LATER NORTHWEST ALSO SUN OTHERWISE RAIN CLOUD)

Text2Gloss: MORGEN OST REGION FREUNDLICH WEST REGION SONNE HABEN REGION UEBERWIEGEND WOLKE
(TOMORROW EAST REGION FRIENDLY WEST REGION SUN HAVE REGION MOSTLY CLOUD)

GT Text: Besonders im osten deutschlands kann es ein wenig regnen oder schneien. (Especially in the east of Germany it can rain a
bit or now)

GT Gloss: BESONDERS OST DEUTSCH LANDMEHR REGEN ODER SCHNEE (ESPECIALLY EAST GERMAN LANDMORE
RAIN OR SNOW)

Text2Gloss: ABER OST SUEDOST DOCH ANFANG REGEN SCHNEE (BUT EAST SOUTHEAST HOWEVER BEGINNING RAIN
SNOW )

GT Text: Schwacher bis mäßiger wind aus nord bis west. (Weak up to moderate wind from the north to the west)

GT Gloss: WIND SCHWACH MAESSIG WEHEN (WIND WEAK MODERATE BLOW)

Text2Gloss: SCHWACH MAESSIG WEHEN (WEAK MODERATE BLOW)

We generate synthetic sign video from previously unseen
label data. To evaluate the quality of the generated output,
we use the Structural Similarity Index Measurement (SSIM)
(Wang et al. 2004), Peak Signal-to-Noise Ratio (PSNR), and
Mean Squared Error (MSE), three well-known metrics for
assessing image quality.

SSIM is ametric used to assess the perceptual degradation
of images and video in broadcast, by comparing a corrupted
image to its original. We adapt this approach to compare
the generated synthetic image G(Pt , Ia) to its ground truth
image It .

For ease of notation we define:

Ît = G(Pt , Ia).

SSIM( Ît , It ) = [l( Ît , It )]α · [c( Ît , It )]β · [s( Ît , It )]γ , (14)

where l( Ît , It ) is a luminance term:

l( Ît , It ) = 2μ Ît
μIt + C1

μ2
Ît

+ μ2
It

+ C1
, (15)
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Fig. 8 We show results for translating text to human pose sequences
by solving an MG using the NMT’s beam search. We show pose label
maps for the MS generator. For visualisation we have condensed the
10 depth channel pose maps into 1 depth channel binary images, and
inverted colour channels, where each joint is now represented by a black
dot. For better interpretability we added bones connecting the joints in
blue (Color figure online)

c( Ît , It ) is a contrast term:

c( Ît , It ) = 2σ Ît
σIt + C2

σ 2
Ît

+ σ 2
It

+ C2
, (16)

and s( Ît , It ) is a structural term:

s( Ît , It ) = σ Ît It
+ C3

σ Ît
σIt + C3

, (17)

with μ Ît
, and μIt being the means, σ Ît

, and σIt the standard

deviations and σ Ît It
the cross-covariance for images Ît and

It . C1 = (k1L)2 and C2 = (k2L)2, where L is the dynamic
range of pixel values, and k1 = 0.01 and k2 = 0.03. C3 is
set to equal C2/2.

With default values of α, β, γ,= 1 the expression for
SSIM simplifies to:

SSI M( Ît , It ) = (2μ Ît
μIt + C1)(2σ Ît It

+ C2)

(μ2
Ît

+ μ2
It

+ C1)(σ
2
Ît

+ σ 2
It

+ C2)
. (18)

The calculated SSIM ranges from −1 to 1, with 1 indicating
the images are identical.

PSNR and MSE are metrics used to assess the quality of
compressed images compared to their original. We use MSE
to calculate the average squared error between a synthetic
image Ît and its ground truth image It , by:

MSE = 1

MN

M∑

m=1

N∑

n=1

[It (m, n) − Ît (m, n)]2 (19)

where N and M are the number of columns and rows respec-
tively.

In contrast PSNRmeasures the peak error in dB, using the
MSE:

Table 3 Mean SSIM, PSNR, and MSE values over the test set, com-
paring synthetic images to their ground truth

SSI M PSNR MSE

Signer 1 0.9378 23.697 191.4903

Signer 2 0.9449 26.4280 154.7963

Signer 3 0.9444 26.6884 153.5546

For SSIM the range is −1 to +1, with +1 indicating identical images.
The lower the MSE between two images, the more alike they are,
whereas we want to maximise the PSNR between two images

PSN R = 10log10

(
R2

MSE

)
, (20)

where R is the maximum possible value of the input data, in
this case 255 for 8-bit unsigned integers.

The MS generation network was trained on 40 different
signers from the SMILE dataset over 90,000 iterations. Out
of these signers, several signerswere chosen, and the network
fine-tuned for another 10,000 iterations on the appearance of
those signers. The pose label maps were generated from run-
ning OpenPose on the full-size SMILE ground truth footage
of 1920× 1080 pixels, and then downsampled to 128× 128
pixels. The original SMILE footage was then also downsam-
pled to 128× 128 pixels to function as input to our network.

We test for three different signers, over a 1000 frames each.
We report the mean SSIM, PSNR, and MSE (see Table 3).
The results indicate that the images produced of all three
signers are very close to their ground truth, with SSIM values
close to 1. Signer 1 has slightly worse scores than signer 2,
and 3, which is due to a corrupted sequence in the gathered
data.

Qualitative results in Figs. 9 and 10 show that the syn-
thetic sequences generated by our network stay close to
their ground truth in terms of both motion and appearance.
Details for hands and faces are largely preserved, however
the network can struggle to form both arms and hands fully,
especially when held in front of the chest and face. This is
likely due to the similarity in colour, which also could have
led to errors in the key point extraction process.

The results also highlight the power of our data-driven
approach to capture natural variations in sign. Signer 2 is
left-handed, whereas signer 1 and 3 are right-handed. There
are also noticeable discrepancies in speed and size of motion
amongst the signers. Linguistically, these are very important
factors that can have a significant impact on the meaning of
a sign. They convey additional information such as emotion
and intent, for example haste, anger, or uncertainty.

Overall our experiments show that ourMS generation net-
work is capable of synthesizing sign language videos that are
highly realistic and variable in terms of motion and appear-
ance formultiple signers. The limiting factor to this approach
is the small aspect ratio of 128 × 128 pixels. We therefore
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Fig. 9 Synthetic productions of the gloss ANTWORT (ANSWER), for
signer 1 (top), signer 2 (middle), and signer 3 (bottom). Every 5th frame
is shown.We can see that all three generated sequences are very close to

their ground truth. It is also interesting to note that with our data-driven
approach it is easy to account for natural variations, such as left-handed
versus right-handed signing

investigate a different variant of our network to produce HD
sign videos in Sect. 4.5.

4.4 Spoken Language to Sign Language Translation

In this section we test the full translation pipeline: going
from spoken language sentences to sign language video
translations.We translate fromGerman to German Sign Lan-
guage (DGS). Our test data is taken from the PHOENIX14T
test dataset. Our Motion Graph (MG) is built from extract-
ing OpenPose skeletal information from the PHOENIX14T
training set. The obtained OpenPose extraction was prone
to errors due to the small resolution of the PHOENIX14T
data (260 × 210 pixels). It did not scale to the 1080 × 720
resolution required for conditioning the HD generator. We
therefore only test our full pipeline using the MS generator,
as it is better aligned in scale with the PHOENIX14T data.

We depict results for four translations. For all cases the
input for our translation is a German sentence. The resulting
gloss and sign video translations are given in Figs. 11, 12, 13
and 14. The beam search over the MG provides the motion
sequences that incorporate the translation from spoken lan-
guage text. These pose sequences then condition the sign gen-
eration network. Transitions between sequences are added

dynamically. We give representative frames for the gener-
ated sequences, indicating which glosses they belong to.

For sequence 1 in Fig. 11 the NMT network correctly
translates to a German gloss sequence which corresponds to
the ground truth. The overall motion of the arms and hands is
consistent with the video ground truth. The signers’ appear-
ances are clearly distinguishable from one another. Signer 1
stays closest to the ground truth, having the most developed
arms and hands. Signer 2 struggles to fully form the right arm
at times, thismight be due to the fact that this signerwas a left-
handed signer in the original dataset and therefore less right
handed motion was observed during training. Signer 3 has
under-developed hands, something that is consistent across
frames and sequences, indicating a failure in conditioning.

Sequence 2 (see Fig. 12) also correctly translates the orig-
inal input sentence. On top of the observations made for
sequence 1, we notice a failure case for the gloss WECH-
SELHAFT (CHANGING). The sign for this gloss in DGS
is a repeated left to right motion of both arms in front of the
body (see the last three frames of the ground truth in Fig. 12).
In the generated sequence, the arms are in front of the body,
but remain in the centre. We assume that this is due to a fail-
ure in the time alignment leading to key points of motion to
the left and right resulting in hands positioned in the centre.
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Fig. 10 Synthetic productions of the gloss ERKLAEREN (EXPLAIN),
for signer 1 (top), signer 2 (middle), and signer 3 (bottom). Every 10th
frame is shown. Generated sequences stay close to their ground truth
throughout, however for signer 2 the network fails to form the right arm

in frame 20.Additionally, this example shows twomore forms of natural
variation in sign language: speed and size of movement. These factors
can have a significant impact, as they convey additional information
such as emotion or intent

Fig. 11 Translation results for “In der Nacht an der See noch stuer-
mische Boeen”. (In the night still storms near the sea). The ground
truth gloss and video is given in the top row. Below we see the gloss
translation and synthetic video generated

Fig. 12 Translation results for “Am Dienstag wechselhaftes Wetter”.
(On Tuesday changing weather). The ground truth gloss and video is
given in the top row. Below we see the gloss translation and synthetic
video generated
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Fig. 13 Translation results for “Guten Abend liebe Zuschauer”. (Good
evening dear viewers). The ground truth gloss and video is given in
the top row. Below we see the gloss translation and synthetic video
generated

Fig. 14 Translation results for “Im Norden maessiger Wind an den
Kuesten weht er teilweise frisch”. (Mild winds in the north, at the coast
it blows fresh in parts). The ground truth gloss and video is given in
the top row. Below we see the gloss translation and synthetic video
generated

Results for sequence 3 in Fig. 13 are in accordance with
the first sequence. The sequence of glosses predictedmatches
the ground truth. Again signer 1 stays closest to the original
motion sequence, even encapsulating the subtle difference in
right hand position (not hand shape) between glosses GUT
(GOOD) and LIEB (DEAR).

Sequence 4 is longer than previous examples, and contains
one translation error (see Fig. 14). The positions of arms and
hands are consistent with the ground truth for the first four
glosses, before encountering the error in gloss prediction.The
motion for the last gloss WIND (WIND) is slightly under-
articulated in contrast to the ground truth.

Overall, the movement of signers is smooth and consis-
tent with the glosses they represent, but not as expressive as
the ground truth. We suspect that the limited motion stems
from the averaging of all example sequences for a gloss to
generate one mean sequence. To our knowledge the timing
information for all glosses was automatically extracted from
the PHOENIX14T data by the creators of the dataset using
a Forced Alignment approach. It is therefore reasonable to
assume that the provided timings contain errors, which nega-
tively affect the mean sequence. Additionally, for most signs
more than one variation exists, but this is not annotated in the
dataset, neither is the use of left or right as the dominant hand.
This further diminishes the motion of the mean sequences.

For future experiments an averaging and data cleaning
process needs to be developed that pays consideration to
variability in speed, expression, and left versus right-handed
signing. To improve the quality of extracted pose informa-
tion, and add additional conditioning for hands and faces
we need datasets of high image resolution. For translation
we require sign language datasets that have topic-comment
alignment. If both is combined, it would be possible to avoid
the heavy cost of manually annotating details in sign motion
such as facial expression and still get rich, natural transla-
tions.

4.5 High Definition Continuous Sign Generation

To improve the resolution and sharpness of our sign genera-
tion we generate HD continuous sign language video using
the HD signing network. The network is conditioned with
semantic label maps encoding human poses. We evaluate
two configurations: A network conditioned only on 15 upper
body joints (as was used in the MS network), and a network
conditioned on the same 15 joints, plus 21 key points for each
hand, and 68 key points for the face. For details see Fig. 15.
We trained for 16 epochs over 19,850 frames and correspond-
ing label maps. For both models we report an average time of
0.42 s per image generated during inference using a GeForce
GTX TITAN X.

Quantitative as well as qualitative results are provided. As
with MS generation, we report the mean SSIM, PSNR, and
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Fig. 15 Example semantic label maps for conditioning on pose only,
containing 15 upper body pose key points (left), and conditioning on
pose, hands and face, containing 15 upper body pose key points, plus 21
key points for each hand, and 68 facial key points (right). Each key point
is assigned to a separate class using a different pixel value. The hand
key points are grouped into two classes representing left and right hand,
the facial key points are grouped as contour, left eye, right eye, nose,
and mouth. Colour channels are inverted for visualisation purposes

Table 4 Mean SSIM, PSNR, and MSE values over the test set, com-
paring synthetic images to their ground truth

SSIM PSNR MSE

HDSp 0.9332 23.1649 331.0621

HDSphf 0.9338 23.5652 303.0417

For SSIM the range is −1 to +1, with +1 indicating identical images.
The lower the MSE between two images, the more alike they are,
whereas we want to maximise the PSNR between two images.
Best results are marked in bold

MSE, this time over a test set of 500 frames, for just the pose
input (HDSp) and pose, hands, and face input (HDSphf) in
Table 4. The results indicate that more detailed condition-
ing with pose, hands, and face key points produces synthetic
images that are closer to the ground truth. However, the dif-
ference in scores is not as significant as might be expected.

Looking at example frameswe can see that bothHDSp and
HDSpfh create synthetic images that closely resemble their
ground truth in both overall structure and detail such as cloth-
ing, overall facial expression and hand shape (see Fig. 16).
However, HDSpfh surpasses HDSp clearly for details of the
generated hands and facial features. Whereas both networks
learn to generate realistic hands and faces, HDSp can gen-
erate the wrong hand shape (see middle column in Figs. 16
and 17), as it does not receive the positional information for
all the finger joints, but merely an overall position of the
hand.

Overall our results indicate that it is possible to generate
highly realistic and detailed synthetic sign language videos,
given sufficient positional information. A compromise can
be found that keeps the annotation effort minimal (like using

an automatic pose detector), whilst maintaining realism and
expressiveness in the synthetic sign video.

5 Conclusions

In this paper, we presented the first spoken language-to-sign
language video translation system. While other approaches
rely on motion capture data and/or the complex animation
of avatars, our deep learning approach combines an NMT
network with a Motion Graph (MG) to produce human pose
sequences. This conditions a signgenerationnetwork capable
of producing sign video frames.

The NMT network’s predictions can successfully be
used to solve the MG, resulting in consistent text2pose
translations. We show this by analysing example text2pose
sequences, and by providing qualitative and quantitative
results for an intermediate text2gloss representation. With
ourmulti-signer (MS)generatorwe are able to producemulti-
ple signers of different appearance. We show this for isolated
signs, and as part of our text2sign translation approach.

Additionally we investigated the generation of HD con-
tinuous sign language video. Our results indicate that it is
possible to produce photo-realistic video representations of
sign language, by conditioning on key points extracted from
training data. The accuracy and fidelity of key points seems to
play a vital role, reinforcing the need for datasets of sufficient
resolution.

Currently our text2sign translation systemcannot compete
with existing avatar approaches. Due to the low resolution
of our translation training data, our results do not have the
output resolution and expressiveness obtainedbymotion cap-
ture and avatar-based approaches.However,we have outlined
that continuous, realistic sign language synthesis is possible,
using minimal annotation. For training we only require text
and gloss-level annotations, as skeletal pose information can
be extracted from video automatically using an off-the-shelf
solution such as OpenPose (Cao et al. 2017). In contrast,
avatar-based approaches require detailed annotations using
task-specific transcription languages, which can only be car-
ried out by expert linguists. Animating the avatar itself often
involves a considerable amount of hand-engineering, and the
results thus far remain robotic and under-articulated. Motion
capture-based approaches require high-fidelity data, which
needs to be captured, cleaned, and stored at considerable
cost, limiting the amount of data available, hencemaking this
approach unscalable. We believe that in time our approach
will enable highly-realistic, and cost-effective translation of
spoken languages to sign languages, improving equal access
for the Deaf and Hard of Hearing.

For future work, our goal is to combine the MS and HD
sign generation capabilities to synthesize highly detailed
sign video, with signers of arbitrary appearance. The MS’s
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Fig. 16 Synthetic example frames for HDSp (top), and HDSpfh (middle), compared to ground truth frames (bottom)

Fig. 17 Local SSIM values comparing HDSp to the ground truth (top) and HDSpfh to the ground truth (bottom). Both seem capable of generating
faces close to the ground truth, but HDSpfh seems to outperform HDSp for generating correct hand shapes

ability to account for spatial and appearance changes, in
combination with the high resolution of the HD generator
would enable us to synthesize highly realistic and expres-
sive sign language video. Additionally, we plan to improve
our current MG by developing a data-processing strategy,
that pays attention to the intricate features of sign language
data, such as size of motion, and speed. This means replac-
ing the current use ofmean sequences with amore thoughtful
approach that takes into account the likelihood of an example
sequence being correct, the skeletal composition of different
signers, and their dominant hand. We further plan to train
our text2sign system end-to-end, and develop a performance
metric to further quantitatively analyse the performance of
our SLP system. Going forward, as progress is made in sign
video-to-spoken-language translation, this could be used as a
quantitative evaluation in itself or possibly as part of a cycle
GAN approach.
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